Quiz A3

Work, energy and power

A body of mass 5.0 kg slides down the full length of an inclined plane without friction. The incline makes an angle 30° to the horizontal and has length 6.0 m.

What is the work done by the weight of the body?

A 150 J B 300 J C -150 J D -300 J

2. A body of mass 8.0 kg has initial kinetic energy 640 J and is brought to rest by a frictional force over a distance 16 m. What is the frictional force?

3. The graph shows how the net force on a body of mass 4.0 kg varies with distance travelled. $_{F\!\mid\,N}$

The initial velocity of the body is zero. What is the velocity of the body after travelling 4.0 m?

A 0 **B** 4.0 m s⁻¹ **C** $4\sqrt{2}$ m s⁻¹ **D** $8\sqrt{2}$ m s⁻¹

4. The graph shows how the net force on a body of mass 2.0 kg varies with time. The body is initially at rest.

What is the **maximum** power delivered to the body during the 4 second interval?

	A 32 W	B 64 W	C 128 W	D 256 W
--	---------------	---------------	----------------	----------------

5. The power delivered to a body initially at rest varies with time as shown.

Which graph shows the correct variation with time of the speed of the body?

6. A body of mass 5.0 kg slides from rest down a rough inclined plane. The incline makes an angle 60° to the horizontal and has height 4.0 m.

The speed of the body at the bottom of the incline is 8.0 m s^{-1} . What is the magnitude of the work done by friction?

A 40 J	B 160 J	C 200 J	D 360 J

7. A block of mass 2.0 kg hangs vertically at the end of a spring of negligible mass. The potential energy stored in the spring is 12 J. A second identical spring is attached to the first spring and the same block is attached to the lower spring.

What is the total energy stored in the two springs?

A 6.0 J **B** 12 J **C** 24 J **D** 48 J

8. A body of mass 15 kg is raised vertically. The gravitational potential energy of the body is increasing at a rate 300 W. How long will it take to raise the body by a distance of 20 m?

A 0.10 s **B** 1.0 s **C** 10 s **D** 100 s

9. A truck of mass 2000 kg is driven on a horizontal road with constant speed 8.0 m s⁻¹. The truck then enters an inclined road. For every 10 m travelled the height increases by 1 m.

What **additional** power must the engine develop in order for the truck to continue moving at the same speed?

A 0 **B** 1.6 kW **C** 16 kW **D** 160 kW

10. A bead is attached to a horizontal ring of radius 2.0 m. A force of 12 N acts on the bead. The force is always tangent to the ring.

What can be said about the work done by this force in one full revolution?

- A It is zero because the displacement is zero.
- **B** It cannot be calculated because the path is not straight.
- **C** It cannot be calculated because the force keeps changing direction.
- **D** The work done is 48π J.

IB Physics: K.A. Tsokos

IB Physics: K.A. Tsokos

Quiz A3			
Answers			
1	Α		
2	В		
3	В		
4	С		
5	D		
6	Α		
7	С		
8	С		
9	С		
10	D		